Cohomology algebras in symplectic, Kähler and algebraic geometry

نویسندگان

  • Claire Voisin
  • C. Voisin
چکیده

We show a number of applications to geometry of the study of cohomology algebras of various kinds of manifolds. The main tool is Hodge theory, and we use it to show that projective complex manifolds are more restricted topologically than compact Kähler manifolds. We also make explicit numerous constraints satisfied by cohomology algebras of compact Kähler manifolds, making them very non generic amongst cohomology algebras of symplectic manifolds satisfying the hard Lefschetz

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lie antialgebras: cohomology and representations

We describe the main algebraic and geometric properties of the class of algebras introduced in [11]. We discuss their origins in symplectic geometry and associative algebra, and the notions of cohomology and representations. We formulate classification theorems and give a number of examples.

متن کامل

Geometric category O and symplectic duality

The purpose of this proposal is to study algebraic symplectic varieties, which arise naturally in algebraic geometry (Hilbert schemes), representation theory (quiver varieties, Springer theory), combinatorics and polyhedral geometry (hypertoric varieties), and string theory (moduli spaces of gauge theories and of Higgs bundles). Our primary interest will be a certain category of sheaves on thes...

متن کامل

Geometric category O and symplectic duality

The purpose of this proposal is to study algebraic symplectic varieties, which arise naturally in algebraic geometry (Hilbert schemes), representation theory (quiver varieties, Springer theory), combinatorics and polyhedral geometry (hypertoric varieties), and string theory (moduli spaces of gauge theories and of Higgs bundles). Our primary interest will be a certain category of sheaves on thes...

متن کامل

Symplectic C∞-algebras

In this paper we show that a strongly homotopy commutative (or C∞-) algebra with an invariant inner product on its cohomology can be uniquely extended to a symplectic C∞-algebra (an ∞-generalisation of a commutative Frobenius algebra introduced by Kontsevich). This result relies on the algebraic Hodge decomposition of the cyclic Hochschild cohomology of a C∞-algebra and does not generalize to a...

متن کامل

Symplectic C∞-algebras

In this paper we show that a strongly homotopy commutative (or C∞-) algebra with an invariant inner product on its cohomology can be uniquely extended to a symplectic C∞-algebra (an ∞-generalisation of a commutative Frobenius algebra introduced by Kontsevich). This result relies on the algebraic Hodge decomposition of the cyclic Hochschild cohomology of a C∞-algebra and does not generalize to a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007